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1 Introduction 
In this final report, we describe the results of our research on distinguishing novel usage from 
novel attacks in host-based intrusion detection systems.  

1.1 Background 
Intrusion detection is vital to the security of mission-critical Army computer systems.  It is 
especially important in today’s increasingly wireless environment, which provides many more 
opportunities for malicious intruders to penetrate Army networks and do a great deal of damage 
as apparent “insiders.”   

Today’s intrusion detection systems (IDSs) fall into two types.  Signature-based IDSs maintain 
profiles of aberrant behavior and raise an alarm when such behavior occurs; they cannot detect 
novel attacks.  Anomaly-based IDSs maintain profiles of normal behavior and raise an alarm 
when anything else occurs.  However, they often generate false alarms.  Like signature-based 
IDSs, anomaly-based IDSs focus on the problem of the moment: does this behavior indicate an 
intrusion?  In many cases, the honest answer is, “I don’t know.”  The event may be part of an 
intrusion, but it might simply be rare or novel behavior, perhaps caused by a new software 
release or a change in communication patterns.  Current IDSs either sound the alarm—leading 
to a high false alarm rate and decreased confidence in the IDS—or quietly forget the possible 
intrusion.   

The focus of this project is improving host-based anomaly detection techniques.  The original 
context of the work was the development of hybrid behavior profiles that include both normal 
and aberrant behavior.  Such profiles would work as shown in Figure 1.  Novel behaviors would 
be cached and information collected about the behavior, so that the IDS could reason about the 
behavior, eventually resulting in the characterization of a given behavior as either normal or 
aberrant/malicious.  

 ?

TriageAberrant
Behavior

Normal
Behavior

Anomalous
Behavior

 
Figure 1.  Triage of behaviors 

The system that we originally selected as the concrete basis for study is process behavior as 
characterized by sequences of kernel calls [Forrest96b, Hofmeyr98].  The Forrest group at the 
University of New Mexico showed that short sequences of calls made by a running program to 
the operating system kernel can be used to detect attacks.  Forrest observed that a program can 



ATC-NY TR-06-0009 
 

 2

be characterized by the set of traces of kernel calls that result from executing the program.  A 
priori, it is not obvious how to represent the (usually infinite) set of possible traces, since loops 
and conditionals can cause each invocation of a program to lead to a different trace.  The Forrest 
group devised a simple but ingenious way to characterize the set of possible traces; they use the 
set of N-grams produced by sliding a window of length N along a trace of a program process.  
An N-gram is a string of N symbols, each of which corresponds to a kernel call such as open.  If 
the program is run many times during a training period, then the result set of N-grams includes 
most of those that will ever appear in normal traces. 

The use of kernel call traces was a major breakthrough in anomaly detection and for many years 
has provided the best characterization of program behavior.  Many alternative detection 
algorithms have been based on the same data and derive from the N-gram approach, including 
[Debar98, Ghosh99, Kruegel03, Lee98, Lee99b, Marceau00, Michael02, Sekar01]. 

1.2 Shared library (DLL) profiles 
In the course of this research, while looking for data streams that would support reasoning about 
anomalies, we discovered a novel way of characterizing program behavior that has numerous 
advantages over previous approaches.  This novel approach provides an alternative to the 
kernel-call data stream.  It is based on tracing calls between independently loaded executables 
and libraries.  Like the work on gray-box anomaly detection [Gao04a, Gao04b] at Carnegie 
Mellon University, it exploits call and return sequences from the application program through 
various libraries and functions down to the OS kernel.  However, our purpose is to factor 
profiles and provide a rich new source of data for analyzing anomalies in a hybrid IDS. In 
addition to supporting reasoning about anomalies, the new method provides a more precise “fit” 
to actual program behavior, which gives it the potential to reduce false positives (false alarms) 
and false negatives (missed attacks) simultaneously.  The new method, which we call “shared 
library profiles” or “DLL profiles,” has numerous advantages over kernel-call profiles.  It is 
discussed in the attached paper. 

1.3 Summary of progress 
In the course of this contract, we have  

• Developed a novel family of methods for detecting anomalies in program execution, 
called “shared library profiling” 

• Demonstrated superior intrusion detection qualities of shared library profile techniques  
• Demonstrated that the performance penalty of shared library profiling is acceptable 
• Developed a novel method of instrumenting applications, called “cascading wrappers,” 

which is able to capture the data stream for shared library profiling 
• Submitted a paper on DLL profiles to ICICS 

These results are summarized in the following sections. 
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2 Shared library (DLL) profiles 
A Windows process comprises multiple (kernel-supported) threads, some of which are 
dedicated to GUI or system functions.  Windows applications make extensive use of DLLs that 
implement the operating system and supply additional functionality.  The Windows kernel API 
is defined by ntdll.dll.  However, Windows applications rarely call ntdll.dll directly.  Indeed, the 
Microsoft Visual Studio development environment does not support calls to ntdll.dll.  Instead, 
kernel32.dll1 defines the standard interface to the operating system, although a few DLLs call 
ntdll directly.  Many calls to kernel32 are mediated through higher-level DLLs.  As a result, the 
typical application call causes multiple calls through layers of DLLs that result in possibly many 
calls to ntdll and the kernel. 

Because calls to operations in ntdll typically originate in other Windows DLLs, not in the 
application, much of the information in kernel-call traces characterizes the internal behavior of 
other DLLs.  Therefore, a single N-gram in such a trace often reflects the behavior of multiple 
DLLs.  In a short execution of Outlook, up to six DLLs at a time were represented on the call 
stack.  Other characterizations of the behavior of the application as a whole also describe the 
combined behavior of many shared libraries. 

In DLL profiling, we characterize each module (the application and the DLLs) by the calls it 
makes to other DLLs, including ntdll, which implements the kernel API.  When one DLL calls 
another, their combined state can be represented with a stack of traces of calls between modules, 
one for each current invocation of a module.  Figure 2 represents a snapshot of the stack.  Each 
box represents a separate sequence that is currently being accumulated.  In Figure 2, the most 
recent inter-module call by the application is to function f() in AAA, which in turn has called 
function c() in CCC.  When function c returns, the current inter-DLL sequence for function c() 
is complete.  If function f() calls another function in another DLL, a sequence for that function 
is pushed onto the stack.  Since DLLs are reentrant, the stack may include multiple 
instantiations of a single module.  
  

             

                                                 
1 The name “Kernel32” suggests that this DLL defines an interface to the kernel.  Kernel32 provides very basic 
operating system functionality, but it accesses the kernel only through ntdll, which implements the kernel API.  In 
this report, we will commonly write DLL names without the .dll extension. 

Trace of application calls to DLLs 

Trace of inter-DLL calls by 
function f() in AAA.dll 

Trace of inter-DLL calls by 
function c() in CCC.dll 

(a) 

AAA.f(); AAA.g();Kernel32.HeapAlloc();BBB.h();…

(b) 

(a) 

AAA.f(); AAA.g();Kernel32.HeapAlloc();BBB.h();…

(b) 



ATC-NY TR-06-0009 
 

 4

Figure 2.  (a) The stack of inter-DLL-call sequences in a thread.  Each stack element is a trace (b) 
of calls from an exported function of a DLL (or the application main) to other DLLs. 

This characterization includes much the same information as the VtPath model of Feng et al. 
[Feng03].  Feng et al. exploit the call stack at each system call to record calls and returns 
between successive system calls.  Like the VtPath model, DLL profiles detect anomalies above 
the kernel-interface level.  Our model differs from theirs in that it records the thread history per 
calling DLL, rather than per call to ntdll.  In addition, our model is much sparser because it 
includes only calls between modules.  At any one time, the expected number of functions on the 
DLL stack is much smaller than the number of functions on the call stack, because functions 
exported by a DLL are gateways to the DLL’s entire functionality, much of which may be 
implemented in other functions inside that DLL.  The exported function may make several calls 
within the DLL before some function in the DLL makes a call to another DLL. 

DLL profiles constitute a whole class of intrusion detection methods, depending on what 
information is recorded in the traces and the profile for each exported DLL function.  For 
example, if the profile focuses on control flow, training traces record the identity of the called 
functions.  N-grams, automata, or other methods may be used to represent the set of  traces 
[Debar98, Forrest96b, Ghosh99, Hofmeyr98, Marceau00, Pfleger04, Warrender99].  
Alternatively, if the profile focuses on dataflow, the training traces record not only the functions 
called, but also relations among the arguments to the function being profiled and the arguments 
of the functions it calls.  The experiments described in this report used N-grams, with N=6,2 but 
most of our results are more generally applicable. 

An IDS that uses the DLL stack model for intrusion detection can be realized in a 
straightforward way.  We posit that the IDS maintains a profile of each function exported by a 
Windows system DLL, in addition to a profile of each application module (binary or DLL) to be 
protected.  At run time, calls to each profiled DLL are captured, for example by mediating 
connectors [Balzer99a, Balzer99b] or our instrumentation, and sent to the IDS.  For each thread, 
the IDS maintains a stack of currently executing modules (DLLs or the main application).  For 
each function in the stack, it records information about the external calls made by the function, 
as in Figure 2.  When an exported function of a DLL is called from another DLL, the 
instrumentation informs the IDS of the call.  The IDS notes the call in the trace at the top of the 
DLL stack for that thread, checks for anomalies against the profile of the calling function, and 
pushes a trace for the called function onto the stack.  When the DLL function returns normally, 
its trace is popped off the DLL stack. 

After an update to a DLL, the IDS continues to function but switches to training mode for the 
updated DLL.  When an exported function from the newly updated DLL is called, the IDS 
pushes the DLL onto the stack, but instead of comparing the trace of the DLL function to the 
old profile, it collects the trace for input into a new profile.  When the DLL function returns, the 
completed trace is added to the collection of traces for that function, and the profile creation 
module of the IDS processes it.  At some point, the profile is deemed sufficiently mature to be 
used for detection.  At that point, the IDS switches back into detection mode for that DLL 
                                                 
2 Although Forrest’s group used N=6 to model UNIX and Linux processes, a smaller value for N may be more 
appropriate for tracking behavior in terms of inter-DLL calls.   
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function.  Note that function profiles mature at different rates, depending on how frequently the 
different functions are exercised. 

3 Benefits of shared library (DLL) profiles 
In the course of this work, we have identified and provided evidence for five important benefits 
of DLL profiles.  Experimental evidence was based on developing a profile of a small 
application (ImgViewer32) and using it to exercise exploits against two recently discovered 
vulnerabilities in Windows DLLs: the gdiplus vulnerability and the WMF vulnerability.  Results 
for both exploits are documented in earlier reports and in a paper. 

Localization of anomalous behavior to code modules.  In both cases, the vulnerable functions 
exhibited clearly anomalous behavior.  That is not surprising.  What may be more surprising is 
that during both exploits, most of the over 800 DLL functions exhibited completely normal 
behavior.  The profiles of a few functions did not converge during training, so they were 
ignored when looking for anomalies.  Thus, the attacks could easily be associated with the 
vulnerable modules.  This helps in isolating the location of a new vulnerability and 
understanding which other applications might be vulnerable (those that use the vulnerable 
DLL). 

Reduction of false negatives.  The DLL functions we have profiled typically have a narrow 
range of behavior.  90% of all traces are of length 6 or less, and half call just one other function.  
This dramatically reduces the chances of a false negative, since it is unlikely that attack 
behavior happens to fall into the narrow range of the function’s normal behavior.   

Resistance to mimicry attacks.  The narrow range of normal behavior reduces the probability 
of false negatives and makes mimicry attacks infeasible by making the target much smaller: 2 
DLLs instead of 14 and 10 functions instead of over 800.  Consider the gdiplus exploit, for 
example. The exploit payload in our experiment created a new user through calls to the netapi32 
DLL.  A clever attacker will avoid such blatant behavior, but will find himself constrained by 
the normal profile of the vulnerable function, in our case GdiplusShutdown.  A mimicry 
attacker has to find a function that is not only vulnerable but also includes the desired 
functionality.  This is much harder to do.  For example, GdiplusShutdown does not call any 
function that creates new users, writes files, or sends messages to another computer. 

Anomaly analysis.  Localizing anomalies to one or more DLLs makes it possible to draw on 
knowledge about the DLLs to analyze anomalies.  Anomaly analysis in real time helps the IDS 
decide whether to treat the anomaly as novel application behavior or an attack.  For example, 
the fact that the anomalies caused by the WMF exploit were in code that had been stable for 
fifteen years made the anomalies much more suspicious than anomalies in a function for which 
training has barely completed. 

Anomaly analysis can also consider the distance of the anomaly from the profile.  For example, 
the gdiplus exploit called two functions in netapi32, which creates new users; netapi32 does not 
appear in the profile.  In addition, anomaly analysis can use information about functions—such 
as their use of powerful actions, such as writing to files—to estimate their potential harm.  Other 
factors of interest are the provenance and change history of the DLL.   
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Easing the burden of training (and retraining).  The time it takes to create a profile of an 
application depends on all possible combinations of behaviors of all the DLLs the application 
invokes.  In a DLL profile, variations of behavior in one DLL are confined to the profile for that 
DLL, avoiding a combinatorial explosion.  Further, updates to Windows system DLLs are 
frequent.  When any update affecting an application occurs, a new round of retraining is 
required.  Retraining one DLL is quicker, and allows detection of anomalies in other DLLs to 
continue while the updated DLL is being trained. 

The rate at which profiles converge is apt to vary from one DLL function to another.  In our 
experiments, we were able to detect anomalies in functions whose profiles had converged 
quickly and unambiguously, while ignoring the behavior of other functions (until their profiles 
converged). 

4 Performance of shared library (DLL) profiles 
In addition to the work reported above, we validated that the performance of DLL profiles is 
adequate.  To do this, we instrumented Outlook with wrappers, using techniques described in 
Section 5.  Using the Kernrate Performance monitoring tool [KrView04], we measured the 
amount of time Outlook spent in both user and privileged modes for four configurations:  

Outlook alone.  In this configuration, no DLL wrappers were used. 
Wrappers but no payload.  In this configuration, Outlook DLLs were wrapped, but 
the wrappers did not do anything. 
Wrappers with simple lookup function.  This configuration modeled inexpensive 
intrusion detection—a table lookup of each call made by the function to another DLL.  
This simple lookup would be appropriate for a DLL function that calls only a small 
number of functions in other DLLs.  It simply ensures that no other functions are 
called. 
Wrappers used in training.  This configuration writes information about the call to a 
log and is analogous to what would be used in training. 

We then computed the performance penalty for different combinations of detection functions, 
including 

• The simple lookup function.  In our experiments, 90% of all DLL functions made 6 or 
fewer inter-DLL calls.  We let the percentage of simple lookup functions vary from 75% 
to 90%. 

• A training function—for this we used our current training function, which writes to a log 
file.  We surmise that at any one time, training will occur for only a few functions.  
However, we computed the effect of training percentages between 1 and 16% 

• A more complex detection function, whose execution time is halfway between simple 
lookup and training.  We assumed that all DLL functions that were not using simple 
lookup and were not in training were using this (otherwise unspecified) detection 
function.   
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The results of the computation are shown in Figure 3.  In every case, the performance penalty is 
under 5%, which should be acceptable for most applications. 
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Figure 3.  Performance penalty for a mix of IDS techniques and percentage of DLLs requiring 

training 

5 Instrumentation 
DLL profiling is of particular interest in Windows systems, which are extremely common.  
Since we have experience in instrumenting Windows systems, it seemed straightforward to 
apply our techniques to collecting data on inter-executable calls.  In this section, we will 
describe our previous experience with instrumenting Windows, problems we encountered in our 
initial attempts to collect data on inter-DLL calls, and the approach that finally brought results. 

In another project at ATC-NY, ntdll.dll functions were wrapped so that calls to the kernel could 
be trapped.  In this project, the wrapper technology was further developed to map the locations 
of DLLs in memory, trace the program stack from the call to ntdll.dll up to the call from the 
main binary, and to note the transitions from one DLL to another.  This technique made it 
possible to track calls between executables; the technology was also used in a successful 
DARPA-funded effort [Marceau05] to profile resource use by applications. 

However, stack tracing has limitations.  For example, many programs are compiled with stack 
frame pointer optimization, which means that they short-circuit the normal calling and register 
use conventions, making it impossible to identify return pointers on the stack.  The basic 
problem is the lack of a standard stack discipline that makes it possible to reliably trace back 
from callee to caller on the stack.  In order to make the instrumentation more robust, another 
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solution was required.  As an alternative, we investigated Microsoft Detours [Detours05], a 
library for instrumenting Win32 functions by re-writing the target function images, and 
Teknowledge’s mediating connector wrappers [Balzer99].  However, Detours requires 
identifying every function that is to be instrumented and manually writing “trampoline” 
instrumentation code for each one, and Balzer’s work currently has the same limitation. 

We have therefore developed an alternative instrumentation approach, which we call “cascading 
wrappers.”  In this approach, whenever a DLL is loaded by the application, the load is 
intercepted and the DLL wrapped dynamically.  (DLL loads are performed by the ntdll.dll 
function LdrLoadDll.)  As a result, all DLLs ultimately invoked by the application are wrapped 
and instrumented, and invocations of functions within them are logged. To catch invocations to 
other DLLs through a function pointer, we trap the caller’s request for the function pointer and 
return a pointer to the (wrapped) DLL function.   

We are not aware of previous efforts to do automatic dynamic wrapping.  Both Teknowledge’s 
wrappers and Microsoft’s Detours product require prior knowledge of the API and custom 
programming to capture calls.  Because it is automatic, our technique cannot exploit knowledge 
of the API or of argument values; we are, however, are able to log the fact that a call has been 
made.   

Both our wrappers and Teknowledge wrappers have “blind spots”—that is, neither can detect all 
calls made between Windows DLLs, although both can detect most calls.  Teknowledge 
wrappers are defined on exported functions, while ours are based on imported functions.  
However, two types of function evade detection by either method, because they invoke 
functions that do not appear in the DLL’s export table: 

• If a DLL implements a C++ class, a non-exported function may be called through a C++ 
class table.  These calls are invisible to both Teknowledge wrappers and ours. 

• In certain other cases, the caller has independent knowledge of the structure of the called 
DLL and is able to locate a function in the DLL without using the export table. 

We believe that additional research on DLL instrumentation would be of great benefit to 
advancing the state of the art in host-based intrusion detection. 

6 Publications 
C. Marceau and M. Stillerman, "Modular Behavior Profiles in Systems with Shared Libraries," 
submitted to the Eighth International Conference on Information and Communications Security 
(ICICS '06), 2006. 

7 Conclusions 
In the past three years, we have implemented and tested a novel data stream for host-based 
anomaly detection that helps to distinguish between novel behavior and novel attacks.  This data 
stream results in a closer approximation to actual program behavior than has hitherto been 
available and makes it possible to reduce both false positives and false negatives, discourage 
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mimicry attacks, reduce the burden of training, and provide information for anomaly analysis.  
DLL profiles lead to a family of intrusion detection methods that all enjoy these advantages.   
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